ORIE 5355

Lecture 10: Algorithmic pricing: price differentiation, competition, and practice

Nikhil Garg

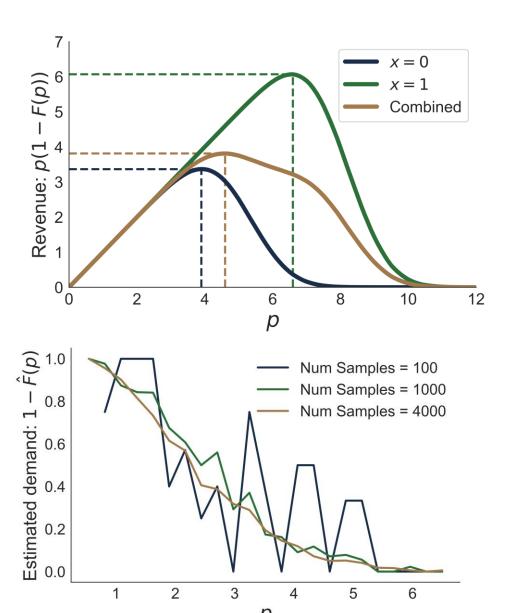
Announcements & reminders

- Quiz 2 released due Sunday evening
- HW 3 released due Tuesday 10/17
 - Conceptual component of HW due by class time on 10/04

Pricing so far

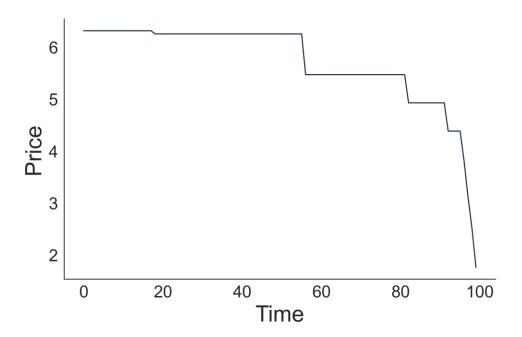
• Given a demand distribution d(p) = 1 - F(p), how to calculate optimal prices $\underset{p}{\arg\max} \left[p \times d(p) \right]$

 How to estimate demand distributions, potentially as a function of covariates



Capacity constraints and pricing over time

- Dynamic programming approach
- If you have T time periods to sell an item and want to maximize expected revenue, what prices p₁ ... p_T do you set?
- Key idea: optimize backwards
 - First decide price p_T
 - Then decide price p_{T-1}
- Posted additional notes; come to OHs for additional questions



Plan for today

Last time:

- A little bit on using side-information (user and item vectors) to estimate personalized demand
- Capacity constraints over time

Many assumptions from previous lectures:

- Only one item
- Allowed to explicitly give different prices to different users
 - Or give different prices over time
- No competition from other sellers
- No over-time dynamics

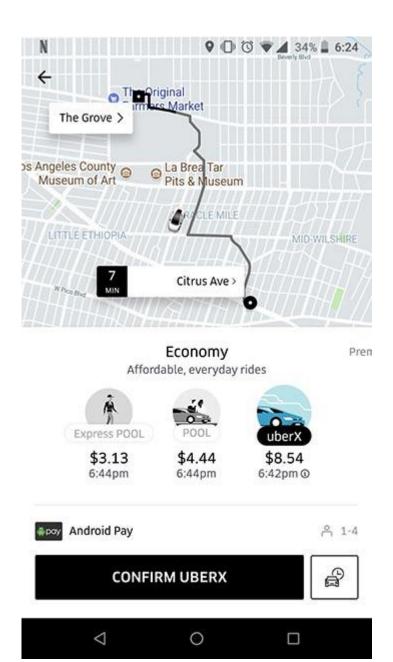
We'll peel back some more of these assumptions today

Selling multiple kinds of items

Price differentiation

Example

- Ride-hailing offers different "tiers" of service
- UberPool cheaper than UberX
 - Also costs less for the platform
- How do we price these items together?
 - What happens if we do simple revenue maximizing price for each item separately?
 - What happens if we make UberPool cheaper?



Motivation

Motivation 1:

You simply have multiple kinds of products to sell. Different types of clothes, laptops, airline seats, furniture, etc.

Motivation 2:

- Earlier: personalized pricing with covariates
- Challenge: Often you can't (technically, ethically, legally, ...) give different prices for the same product to different users based on covariates
- Now: Different "tiers" of service.
 - High quality: First class seats, faster service in Uber/Lyft, luxury goods versions, get item "now"
 - Lower quality: Economy seats, UberPool/Lyft Wait and Save, ...

=> Purposely create tiers of service to earn more money from richer people while earning something from others

Challenges

 Just like pricing over time, now prices for the 2 items depend on each other

Unlike pricing to different demographic segments without capacity constraints

 Cannibalization: Customers who would have bought the luxury good instead buy the cheaper good because it is available

2-item user behavior model

- Suppose you're selling 2 types of items
- Each person will buy at most one item
 - Each person has a private valuation v_1 for item 1 and v_2 for item 2
- Suppose you offer the items at price p_1 and p_2 , respectively
- How does the person make their decision? Utility from item j at price p_j is $v_j - p_j$
- Person *i* buys

Neither item if
$$v_1 < p_1$$
 and $v_2 < p_2$
Item 1 if $v_1 \ge p_1$ and $v_1 - p_1 \ge v_2 - p_2$
Item 2 if $v_2 \ge p_2$ and $v_2 - p_2 \ge v_1 - p_1$

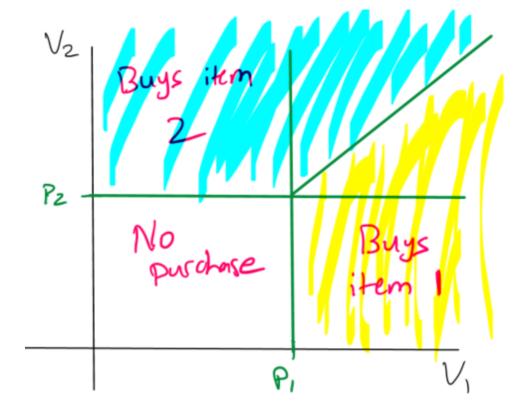
Assumption on customer's "choice model." More generally, customer could buy randomly, with choice probabilities that depend on

$$v_j - p_j$$

In more detail

How does the person make their decision? Person *i* buys

Neither item if $v_1 < p_1$ and $v_2 < p_2$ Item 1 if $v_1 \ge p_1$ and $v_1 - p_1 \ge v_2 - p_2$ Item 2 if $v_2 \ge p_2$ and $v_2 - p_2 \ge v_1 - p_1$



Revenue in 2 item model

For a set of prices (p_1, p_2) , let

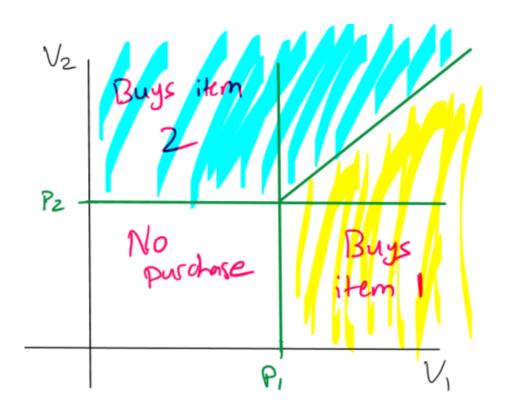
 $d_1(p_1, p_2)$ be fraction of people who buy item 1 (Yellow Region)

 $d_2(p_1, p_2)$ be fraction of people who buy item 2 (Blue Region)

Then, revenue is:

$$p_1 \times d_1(p_1, p_2) + p_2 \times d_2(p_1, p_2)$$

Given functions d_1 , d_2 , can solve for optimal prices



Cannibalization

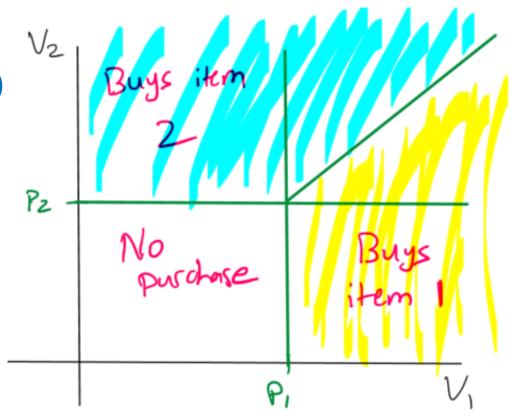
Now, each price affects other item.

Revenue: $p_1 \times d_1(p_1, p_2) + p_2 \times d_2(p_1, p_2)$

Suppose decrease p_1 (make item 1 cheaper)

Then:

- Earn less money in yellow region ↓
- Yellow region becomes bigger
 White region becomes smaller ↑
 Blue region becomes smaller ↓



Demand estimation with multiple items

- With a single item, we suggested machine learning approach to estimate: $d(p, x) \stackrel{\text{def}}{=} 1 F_{p|X}(p \mid X = x)$
- Assume we have user i with covariates x_i
- Now, would need to estimate $d_1(p_1, p_2, x_i)$ and $d_2(p_1, p_2, x_i)$
- Gets very hard, very quickly
- Approach 1: Use a *multi-class* classification algorithm $g(p_1, p_2, x_i)$ [Buy nothing, buy item 1, buy item 2] and then extract class probabilities (sci-kit learn: use **predict_proba** with any multi-class classifier)
- Approach 2: (Extend idea from previous class)
 - Use user and item vectors, i.e., $(p_1, p_2, u_i \cdot w_{\text{item 1}}, u_i \cdot w_{\text{item 2}})$

Sidenote: Substitutes and complements

 So far: motivation -- we have multiple products to sell, that appeal to different customers

"cheaper" and "more expensive" product

- Items are "substitutes": people only buy at most one kind of item
- Sometimes, items are "complements" buying one item makes the other item more attractive
 - Soda + popcorn at movie theater
 - iPhone and Macbook and Apple Watch and Apple TV and ...
- Then, reducing one item's price might induce you to buy more overall
 - An item is a "loss leader"

Putting pieces together: class competition

So far we've covered

- Recommendation systems
 - Given past user and item data, predicting how much each user would like each item
 - How to turn these predictions into *recommendations* (with capacity constraints)
- Pricing
 - Single item revenue maximization
 - Estimating demand at each price, potentially with covariates
 - Potentially with multiple items, and with using user and item vectors
 - Pricing over time with capacity constraints
 - Pricing multiple items

Overview: Real-life algorithmic pricing

- You and a single competitor (your classmates) each are selling two types of items, Book A and Book B.
 - With some initial capacity of each (let's pretend 10) No capacity constraints
- A customer walks in and you observe some personal data
 - Just demographic covariates
 - Demographic covariates & user vector trained using their past experiences
- You and your competitor post prices for each item
- The customer at most 1 item and leaves
- Repeat for many customers over time

Basic case

- For now, let's ignore: Competition and capacity constraints
- For each user, you have either just demographic covariates x_i or also a trained user vector u_i from their past interactions on your site
- You would predict demand for each item, $d_1(p_A, p_B, x_i, u_i)$ and $d_2(p_A, p_B, x_i, u_i)$ for each set of prices (p_A, p_B)
 - Your choice on how to estimate this demand
 - What do you do for customers with no user vector u_i ?
- Set prices to maximize your expected revenue

Complication 1: Capacity constraints

- Now, have 10 copies of each item, and there will be T=100 customers.
- Now, the price that you set for each item should depend on opportunity cost: what if you can sell that item to a different customer in the future?
- 3-d Bellman equation: time, capacity of Book A, capacity of Book B
- Set up your Bellman equation:

$$V_{t,k_A,k_R} = A + B + C$$

A: If I sell Book A today: Revenue today, plus future revenue from 1 less Book A
B: If I sell Book B today: Revenue today, plus future revenue from 1 less Book B
C: If I don't sell anything: future revenue from same number of copies

How to calculate future revenue?

- As before, future revenue depends on future prices that you set
- ... Think about prices you'd set on last day T-1=99
 - For each combination of capacities left k_A, k_B
- Complication: on day t < T 1 you don't yet know the customer x_{T-1}, u_{T-1} that will show up on the last day T 1!
 - You only know customer who has shown up on day t
- When calculating future expected value V_{t+1,k_A,k_B} , you need to consider the distribution of customers that could show up
 - Use training data to consider possible customers that could show up
 - * Then calculate the prices that you would show each of them

Complication 2: Competition

- You and your opponent both do the same thing, and calculate the exact same prices p_A , p_B at the current time step
- Your opponent is clever, and so decides to *undercut* you slightly, and so sets prices $p_A = \$0.01$, $p_B = \$0.01$
- ...but you're cleverer, and know your opponent will do this, and so you set prices $p_A = \$0.02$, $p_B = \$0.02$
- There's now a game theory component: you need to anticipate what your opponent will do when setting prices
- More complicated: it's a repeated setting
 - If you "lose" today, your competitor has less items in stock for tomorrow
 - You can *learn parameters* for how your opponent behaves

Rest of pricing module

10/2: Pricing in ride-hailing

10/4: What's acceptable in pricing?

Required to complete the questionnaire before the class!

Questions?