ORIE 5355
 Lecture 10: Algorithmic pricing: price differentiation, competition, and practice

Nikhil Garg

Announcements \& reminders

- Quiz 2 released - due Sunday evening
- HW 3 released - due Tuesday 10/17
- Conceptual component of HW due by class time on 10/04

Pricing so far

- Given a demand distribution $\mathrm{d}(\mathrm{p})=1$ $F(p)$, how to calculate optimal prices

$$
\arg \max _{\mathrm{p}}[\mathrm{p} \times \mathrm{d}(\mathrm{p})]
$$

- How to estimate demand distributions, potentially as a function of covariates

Capacity constraints and pricing over time

- Dynamic programming approach
- If you have T time periods to sell an item and want to maximize expected revenue, what prices $\mathrm{p}_{1} \ldots \mathrm{p}_{\mathrm{T}}$ do you set?
- Key idea: optimize backwards
- First decide price p_{T}
- Then decide price $\mathrm{p}_{\mathrm{T}-1}$

- Posted additional notes; come to OHs for additional questions

Plan for today

Last time:

- A little bit on using side-information (user and item vectors) to estimate personalized demand
- Capacity constraints over time

Many assumptions from previous lectures:

- Only one item
- Allowed to explicitly give different prices to different users
- Or give different prices over time
- No competition from other sellers
- No over-time dynamics

We'll peel back some more of these assumptions today

Selling multiple kinds of items

Price differentiation

Example

- Ride-hailing offers different "tiers" of service
- UberPool cheaper than UberX
- Also costs less for the platform
- How do we price these items together?
- What happens if we do simple revenue maximizing price for each item separately?
- What happens if we make UberPool cheaper?

Motivation

Motivation 1:

You simply have multiple kinds of products to sell. Different types of clothes, laptops, airline seats, furniture, etc.
Motivation 2:

- Earlier: personalized pricing with covariates
- Challenge: Often you can't (technically, ethically, legally, ...) give different prices for the same product to different users based on covariates
- Now: Different "tiers" of service.
- High quality: First class seats, faster service in Uber/Lyft, luxury goods versions, get item "now"
- Lower quality: Economy seats, UberPool/Lyft Wait and Save, ...
=> Purposely create tiers of service to earn more money from richer people while earning something from others

Challenges

- Just like pricing over time, now prices for the 2 items depend on each other

Unlike pricing to different demographic segments without capacity constraints

- Cannibalization: Customers who would have bought the luxury good instead buy the cheaper good because it is available

2-item user behavior model

- Suppose you're selling 2 types of items
- Each person will buy at most one item
- Each person has a private valuation v_{1} for item 1 and v_{2} for item 2
- Suppose you offer the items at price p_{1} and p_{2}, respectively
- How does the person make their decision?

Utility from item j at price p_{j} is $v_{j}-p_{j}$

- Person i buys

Neither item if $v_{1}<p_{1}$ and $v_{2}<p_{2}$
Item 1 if $v_{1} \geq p_{1}$ and $v_{1}-p_{1} \geq v_{2}-p_{2}$
Item 2 if $v_{2} \geq p_{2}$ and $v_{2}-p_{2} \geq v_{1}-p_{1}$

Assumption on customer's "choice model." More generally, customer could buy randomly, with choice probabilities that depend on
$v_{j}-p_{j}$

In more detail

How does the person make their decision? Person i buys Neither item if $v_{1}<p_{1}$ and $v_{2}<p_{2}$
Item 1 if $v_{1} \geq p_{1}$ and $v_{1}-p_{1} \geq v_{2}-p_{2}$ Item 2 if $v_{2} \geq p_{2}$ and $v_{2}-p_{2} \geq v_{1}-p_{1}$

Revenue in 2 item model

For a set of prices $\left(p_{1}, p_{2}\right)$, let
$\mathrm{d}_{1}\left(p_{1}, p_{2}\right)$ be fraction of people who buy item 1 (Yellow Region)
$\mathrm{d}_{2}\left(p_{1}, p_{2}\right)$ be fraction of people who buy item 2 (Blue Region)
Then, revenue is:

$$
p_{1} \times \mathrm{d}_{1}\left(p_{1}, p_{2}\right)+p_{2} \times \mathrm{d}_{2}\left(p_{1}, p_{2}\right)
$$

Given functions $\mathrm{d}_{1}, \mathrm{~d}_{2}$, can solve for optimal prices

Cannibalization

Now, each price affects other item.
Revenue: $p_{1} \times \mathrm{d}_{1}\left(p_{1}, p_{2}\right)+p_{2} \times \mathrm{d}_{2}\left(p_{1}, p_{2}\right)$
Suppose decrease p_{1} (make item 1 cheaper)
Then:

- Earn less money in yellow region \downarrow
- Yellow region becomes bigger

White region becomes smaller \uparrow
Blue region becomes smaller \downarrow

Demand estimation with multiple items

- With a single item, we suggested machine learning approach to estimate: $\mathrm{d}(\mathrm{p}, \mathrm{x}) \stackrel{\text { def }}{=} 1-F_{p \mid X}(p \mid X=x)$
- Assume we have user i with covariates x_{i}
- Now, would need to estimate $\mathrm{d}_{1}\left(p_{1}, p_{2}, x_{i}\right)$ and $\mathrm{d}_{2}\left(p_{1}, p_{2}, x_{i}\right)$
- Gets very hard, very quickly
- Approach 1: Use a multi-class classification algorithm $g\left(p_{1}, p_{2}, x_{i}\right)$ [Buy nothing, buy item 1, buy item 2] and then extract class probabilities (sci-kit learn: use predict_proba with any multi-class classifier)
- Approach 2: (Extend idea from previous class)
- Use user and item vectors, i.e., ($\mathrm{p}_{1}, \mathrm{p}_{2}, u_{i} \cdot w_{\text {item } 1}, u_{i} \cdot w_{\text {item } 2}$)

Sidenote: Substitutes and complements

- So far: motivation -- we have multiple products to sell, that appeal to different customers
"cheaper" and "more expensive" product
- Items are "substitutes": people only buy at most one kind of item
- Sometimes, items are "complements" - buying one item makes the other item more attractive
- Soda + popcorn at movie theater
- iPhone and Macbook and Apple Watch and Apple TV and ...
- Then, reducing one item's price might induce you to buy more overall
- An item is a "loss leader"

Putting pieces together: class competition

So far we've covered

- Recommendation systems
- Given past user and item data, predicting how much each user would like each item
- How to turn these predictions into recommendations (with capacity constraints)
- Pricing
- Single item revenue maximization
- Estimating demand at each price, potentially with covariates
- Potentially with multiple items, and with using user and item vectors
- Pricing over time with capacity constraints
- Pricing multiple items

Overview: Real-life algorithmic pricing

- You and a single competitor (your classmates) each are selling two types of items, Book A and Book B.
- With some initial capacity of each (let's pretend-10) No capacity constraints
- A customer walks in and you observe some personal data
- Just demographic covariates
- Demographic covariates \& user vector trained using their past experiences
- You and your competitor post prices for each item
- The customer at most 1 item and leaves
- Repeat for many customers over time

Basic case

- For now, let's ignore: Competition and capacity constraints
- For each user, you have either just demographic covariates x_{i} or also a trained user vector u_{i} from their past interactions on your site
- You would predict demand for each item, $d_{1}\left(p_{A}, p_{B} x_{i}, u_{i}\right)$ and $d_{2}\left(p_{A}, p_{B}, x_{i}, u_{i}\right)$ for each set of prices $\left(p_{A}, p_{B}\right)$
- Your choice on how to estimate this demand
- What do you do for customers with no user vector u_{i} ?
- Set prices to maximize your expected revenue

Complication 1: Capacity constraints

- Now, have-10 copies of each item, and there will be- $T=100$-customers.
- Now, the price that you set for each item should depend on opportunity cost: what if you can sell that item to a different customer in the future?
- 3-d Bellman equation: time, capacity of Book A, capacity of Book B
- Set up your Bellman equation:

$$
V_{E, k_{A}, k_{B}}=A+B+C
$$

A: If I sell Book A today: Revenue today, plus future revenue from 1 less Book A B: If I sell Book B today: Revenue today, plus future revenue from 1 less Book B C:IfIdon't sell anything: future revenue from same number of copies

How to calculate future revenue?

- As before, future revenue depends on future prices that you set
-...Think about prices you'd set on last day T-1-99
- For each combination of capacities left $\mathrm{k}_{A}, \mathrm{k}_{B}$
- Complication: on day $t<T-1$ you don't yet know the customer x_{T-1}, u_{T-1} that will show up on the last day $T=1!$
- You only know customer who has shown up on dayt
- When calculating future expected value $V_{E+1, k_{A}, k_{B},}$ you need to consider the distribution of customers that could show up
- Use training data to consider possible customers that could show up
- Then calculate the prices that you would show each of them

Complication 2: Competition

- You and your opponent both do the same thing, and calculate the exact same prices p_{A}, p_{B} at the current time step
- Your opponent is clever, and so decides to undercut you slightly, and so sets prices $p_{A}-\$ 0.01, p_{B}-\$ 0.01$
- ...but you're cleverer, and know your opponent will do this, and so you set prices $p_{A}-\$ 0.02, p_{B}-\$ 0.02$
- There's now a game theory component: you need to anticipate what your opponent will do when setting prices
- More complicated: it's a repeated setting
- If you "lose" today, your competitor has less items in stock for tomorrow
- You can learn parameters for how your opponent behaves

Rest of pricing module

10/2: Pricing in ride-hailing
10/4: What's acceptable in pricing?

- Required to complete the questionnaire before the class!

Questions?

